Cuzco

Inca Empire Capital.

Cuzco City Map

 

Cuzco Panorama View

 

Machu Picchu,

The Lost City of the Incas.

 

Machu Picchu Map.

Explore this interactive map

Inca Trail to Machu Picchu.  Interactive map. Satellite Image. Google Earth.

Machu Picchu and Sierpinski Triangle. Fractal illustration with animation

Machu Picchu and Geometric Art

Machu Picchu and Geometric Art

Sacsayhuaman Fortress,

Interactive Panorama View.

The Quipu,

The Pre-Inca Data Structure.

 

The Quipu,

Caral: Ancient City.

The Nazca Lines

An enigma of archeology.

Nazca Lines: The Monkey

Nazca Lines and Maria Reiche.

Mystery on the Desert.

The Lord of Sipan

Sipan and Geometric Art

The Lord of Sipan and Geometric Art

Inca Music

El Condor Pasa

"Inca City" on Mars?

South Polar Region on Mars. NASA Mariner 9.

Geometry and Cultures
Gold Tumi.

About Peru

The Land of the Incas

Cuzco.The Stone of 12 angles 

Machu Picchu

Machu Picchu and Sierpinski Triangle.

 

Nazca Lines: The Condor bird

Nazca Lines: The Monkey 

Nazca Lines: The Spider

 

The Lord of Sipan

The Lord of Sipan: the Spiderman

 

Machu Picchu and Yale University. Peru tells Yale it wants its Machu Picchu treasures back (after 100 years).

Peru: from the art of the Chavin to the Incas. Show in Paris.  

Inca Quiz.

Ten questions in random order.

The Landscape of the Inca Empire,

Word storming (brainstorming) 

The Lord of Sipan and Pre Inca Spiderman, Gold Neckle.

Machu Picchu and Sierpinski Triangle

See also: The Incas

 

 

Celestial Find at Ancient Andes. Stonehenge-era celestial observatory oldest found in region.

Tattooed mummy puzzles scientists in Peru. 

Chinchero, Cuzco, Panorama View

Inca Trail to Machu Picchu: Huinay Hayna

Machu Picchu Condor's Eye View

 

Recent Additions (Page 3 of 4)

Go to Page: 1 | 2 | 3 | 4

 

1.

Cuzco. Inca Empire Capital.

 

2.

Cuzco City Map

3.

Cuzco Panorama View

4.

Machu Picchu,The Lost City of the Incas.

125.

Machu Picchu Map. Explore this interactive map

 

126.

Triangle with Squares Problem

127.

Sangaku Problem. The incenters of four triangles in a cyclic quadrilateral form a rectangle.

 
Home  Email

 

Last updated: June 29, 2006